skip to main content


Search for: All records

Creators/Authors contains: "Townsend, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Koopman operators linearize nonlinear dynamical systems, making their spectral information of crucial interest. Numerous algorithms have been developed to approximate these spectral properties, and dynamic mode decomposition (DMD) stands out as the poster child of projection-based methods. Although the Koopman operator itself is linear, the fact that it acts in an infinite-dimensional space of observables poses challenges. These include spurious modes, essential spectra, and the verification of Koopman mode decompositions. While recent work has addressed these challenges for deterministic systems, there remains a notable gap in verified DMD methods for stochastic systems, where the Koopman operator measures the expectation of observables. We show that it is necessary to go beyond expectations to address these issues. By incorporating variance into the Koopman framework, we address these challenges. Through an additional DMD-type matrix, we approximate the sum of a squared residual and a variance term, each of which can be approximated individually using batched snapshot data. This allows verified computation of the spectral properties of stochastic Koopman operators, controlling the projection error. We also introduce the concept of variance-pseudospectra to gauge statistical coherency. Finally, we present a suite of convergence results for the spectral information of stochastic Koopman operators. Our study concludes with practical applications using both simulated and experimental data. In neural recordings from awake mice, we demonstrate how variance-pseudospectra can reveal physiologically significant information unavailable to standard expectation-based dynamical models.

     
    more » « less
  2. Abstract

    Koopman operators are infinite‐dimensional operators that globally linearize nonlinear dynamical systems, making their spectral information valuable for understanding dynamics. However, Koopman operators can have continuous spectra and infinite‐dimensional invariant subspaces, making computing their spectral information a considerable challenge. This paper describes data‐driven algorithms with rigorous convergence guarantees for computing spectral information of Koopman operators from trajectory data. We introduce residual dynamic mode decomposition (ResDMD), which provides the first scheme for computing the spectra and pseudospectra of general Koopman operators from snapshot data without spectral pollution. Using the resolvent operator and ResDMD, we compute smoothed approximations of spectral measures associated with general measure‐preserving dynamical systems. We prove explicit convergence theorems for our algorithms (including for general systems that are not measure‐preserving), which can achieve high‐order convergence even for chaotic systems when computing the density of the continuous spectrum and the discrete spectrum. Since our algorithms have error control, ResDMD allows aposteri verification of spectral quantities, Koopman mode decompositions, and learned dictionaries. We demonstrate our algorithms on the tent map, circle rotations, Gauss iterated map, nonlinear pendulum, double pendulum, and Lorenz system. Finally, we provide kernelized variants of our algorithms for dynamical systems with a high‐dimensional state space. This allows us to compute the spectral measure associated with the dynamics of a protein molecule with a 20,046‐dimensional state space and compute nonlinear Koopman modes with error bounds for turbulent flow past aerofoils with Reynolds number >105that has a 295,122‐dimensional state space.

     
    more » « less
  3. Abstract

    There is an opportunity for deep learning to revolutionize science and technology by revealing its findings in a human interpretable manner. To do this, we develop a novel data-driven approach for creating a human–machine partnership to accelerate scientific discovery. By collecting physical system responses under excitations drawn from a Gaussian process, we train rational neural networks to learn Green’s functions of hidden linear partial differential equations. These functions reveal human-understandable properties and features, such as linear conservation laws and symmetries, along with shock and singularity locations, boundary effects, and dominant modes. We illustrate the technique on several examples and capture a range of physics, including advection–diffusion, viscous shocks, and Stokes flow in a lid-driven cavity.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. We review recent advances in algorithms for quadrature, transforms, differential equations and singular integral equations using orthogonal polynomials. Quadrature based on asymptotics has facilitated optimal complexity quadrature rules, allowing for efficient computation of quadrature rules with millions of nodes. Transforms based on rank structures in change-of-basis operators allow for quasi-optimal complexity, including in multivariate settings such as on triangles and for spherical harmonics. Ordinary and partial differential equations can be solved via sparse linear algebra when set up using orthogonal polynomials as a basis, provided that care is taken with the weights of orthogonality. A similar idea, together with low-rank approximation, gives an efficient method for solving singular integral equations. These techniques can be combined to produce high-performance codes for a wide range of problems that appear in applications. 
    more » « less